Franck Charras

I graduated as a machine learning research engineer in 2016, with a specialization in NLP. I co-founded Sancare a start-up company that aims at bringing NLP-based solutions for medical data analysis to hospitals, and that has made a place for itself in the market with a performant NLP-powered billing assistant for medical stays. I'm now working at INRIA, France as a Machine Learning Research Engineers, focused on performance computing.


Institute / Company

INRIA

Git*hub|lab

https://github.com/fcharras/


Sessions

08-17
10:30
90min
Interoperability in the Scientific Python Ecosystem
Tim Head, Mridul Seth, Olivier Grisel, Franck Charras, Sebastian Berg, Joris Van den Bossche

This slot will cover the effort regarding interoperability in the scientific Python ecosystem. Topics:

  • Using the Array API for array-producing and array-consuming libraries
  • DataFrame interchange and namespace APIs
  • Apache Arrow: connecting and accelerating dataframe libraries across the PyData ecosystem
  • Entry Points: Enabling backends and plugins for your libraries

Using the Array API for array-producing and array-consuming libraries

Already using the Array API or wondering if you should in a project you maintain? Join this maintainer track session to share your experience and exchange knowledge and tips around building array libraries that implement the standard or libraries that consume arrays.

DataFrame-agnostic code using the DataFrame API standard

The DataFrame Standard provides you with a minimal, strict, and predictable API, to write code that will work regardless of whether the caller uses pandas, polars, or some other library.

DataFrame Interchange protocol and Apache Arrow

The DataFrame interchange protocol and Arrow C Data interface are two ways to interchange data between dataframe libraries. What are the challenges and requirements that maintainers encounter when integrating this into consuming libraries?

Entry Points: Enabling backends and plugins for your libraries

In this talk, we will discuss how NetworkX used entry points to enable more efficient computation backends to plug into NetworkX

Scientific Applications
HS 119 - Maintainer track
08-17
15:30
30min
Exploring GPU-powered backends for scikit-learn
Franck Charras, Olivier Grisel

Could scikit-learn future be GPU-powered ? This talk will discuss the performance improvements that GPU computing could bring to existing scikit-learn algorithms, and will describe a plugin-based design that is being foresighted to open-up scikit-learn compatibility to faster compute backends, with special concern for user-friendliness, ease of installation, and interoperability.

High Performance Computing
Aula