Debugging JuMP optimization models using graph theory
Writing a large optimization model is a time-consuming and error-prone task. If and when a modeling error is suspected, the developer often must re-consider every constraint in the model for faulty assumptions causing singularities in the optimization model, which impede convergence of solvers. We introduce a package that computes the Dulmage-Mendelsohn and block triangular partitions of incidence graphs of JuMP models, which can be used to detect sources of structural and numeric singularities.