2023-04-18 –, B05-B06
As the number of production machine learning use-cases increase, we find ourselves facing new and bigger challenges where more is at stake. Because of this, it's critical to identify the key areas to focus our efforts, so we can ensure our machine learning pipelines are reliable and scalable. In this talk we dive into the state of production machine learning in the Python Ecosystem, and we will cover the concepts that make production machine learning so challenging, as well as some of the recommended tools available to tackle these challenges.
This talk will cover key principles, patterns and frameworks around the open source frameworks powering single or multiple phases of the end-to-end ML lifecycle, incluing model training, deploying, monitoring, etc. We will be covering a high level overview of the production ML ecosystem and dive into best practices that have been abstracted from production use-cases of machine learning operations at scale, as well as how to leverage tools to that will allow us to deploy, explain, secure, monitor and scale production machine learning systems.
As the number of production machine learning use-cases increase, we find ourselves facing new and bigger challenges where more is at stake. Because of this, it's critical to identify the key areas to focus our efforts, so we can ensure our machine learning pipelines are reliable and scalable. In this talk we dive into the state of production machine learning in the Python Ecosystem, and we will cover the concepts that make production machine learning so challenging, as well as some of the recommended tools available to tackle these challenges.
This talk will cover key principles, patterns and frameworks around the open source frameworks powering single or multiple phases of the end-to-end ML lifecycle, incluing model training, deploying, monitoring, etc. We will be covering a high level overview of the production ML ecosystem and dive into best practices that have been abstracted from production use-cases of machine learning operations at scale, as well as how to leverage tools to that will allow us to deploy, explain, secure, monitor and scale production machine learning systems.
This talk will be relevant for any keen python practitioners or seasoned ML practitioners interested to get an updated overview of the state of the production ML ecosystem in the current year, covering a broad range of sub-fields in the space.
This talk will benefit the Python ecosystem by providing cross-functional knowledge, bringing together best practices from data scientists, software engineers and DevOps engineers to tackle the challenge of machine learning at scale. During this talk we will shed light into some of the more popular and up-and-coming libraries to watch in this space, and we will provide a conceptual and practical hands on deep dive which will allow the community to both, tackle this issues and help further the discussion.
Intermediate
Expected audience expertise: Python –Novice
Abstract as a tweet –Join us at the PyCon DE conference to learn about the current state of production machine learning in the Python ecosystem! We'll cover key principles, frameworks for end-to-end ML lifecycle, best practices, and recommended tools for deployment, security, and scaling.
Public link to supporting material –https://github.com/EthicalML/awesome-production-machine-learning/
Alejandro is the Director of Engineering & Applied Science at Zalando where he leads a cross-functional technology organisation consisting of department heads, managers, principals and ICs across engineering and data science, and is responsible for the development of a large portfolio of (10+) products, the management of one of Zalando's large-scale central data platforms, and the productionisation of SOtA machine learning systems powering high-value & critical use-cases across the organisation. Alejandro is also the Chief Scientist at the Institute for Ethical AI & Machine Learning, where he contributes to policy and industry standards on the responsible design, development and operation of AI, and has led policy contributions including the EU's AI Regulatory Proposal, the Data Act, between others. With over 10 years of software development experience, Alejandro has held technical leadership positions across hyper-growth scale-ups and tech giants, with a strong track record of building cross-functional R&D and Product organisations. He is currently appointed as governing council Member-at-Large at the Association for Computing Machinery (ACM), and is currently the Chairperson of the ML Security Committee at the Linux Foundation.
Linkedin: https://linkedin.com/in/axsaucedo
Twitter: https://twitter.com/axsaucedo
Github: https://github.com/axsaucedo
Website: https://ethical.institute/