PyCon JP 2024

ロケール設定が保存されました。pretalxでは英語のサポートが充実していると思っていますが、問題やエラーが発生した場合は、ぜひご連絡ください。

池嶋大樹

エムスリー株式会社
AI・機械学習チーム 機械学習エンジニア

2019年入社。
ユーザーの興味トピック推計システムの開発など、機械学習を使ったプロダクト開発に従事。
MLOpsのためのパイプラインツールgokartの開発にも参加。

X: @mski_iksm


Session

09/27
14:40
30min
MLOpsの「あるある」な課題の解決と、そのためのライブラリgokart
池嶋大樹

LLMを含め、機械学習技術は快適なアプリケーションを作成する上で、もはや欠かせない存在ではないでしょうか?一方で、「運用」という側面に目を向けると、機械学習はモデルの更新や入出力の変更など、普段のアプリケーション運用とは一味違った問題が出てきますよね。

例えば、以下のような課題があがってくるかと思います。
- 実験した機械学習モデルの再現性がない
- モデルのバージョニングがごちゃごちゃになり、どの設定で作ったものかわからない
- バッチ実行のたびに重複した処理を繰り返して非効率的
- 似たような関数がプロダクトごとに重複して作られてしまう
- 開発者によって書き方がばらつき、他メンバーが読みにくい

こうした問題の解決には、「処理結果をキャッシュして、同じ処理は再実行しない」や「モデルとコードとを1:1で対応させる」といった戦略が効果的だと考えられます。これらの課題解決の知見を元に、エムスリーでは、MLOpsのためのライブラリ「gokart」を開発し活用してきました。

この発表では、MLOpsの「あるある」な課題とそれへの対処法に関して、今まで培ってきた知見と実際の実装を紹介していきます。ぜひお楽しみに!

Pythonを用いた開発のプラクティス
20F Track2