PyLadiesCon 2024

As suas preferências de localidade foram salvas. Gostamos de pensar que temos um excelente suporte para o português no Pretalx, mas se encontrar problemas ou erros, entre em contato connosco!

Eloisa Perez-Bennetts

¡Hola! Soy Eloisa, una modeladora apasionada por la programación.
Estudié física en la universidad de Sydney, con enfoque hacia la programación y biotecnología. Ahí investigué cómo hacer nanorobots médicos para el cerebro, desarrollando algoritmos ML para analizar mapas cerebrales, y creando puertas lógicas hechas de moléculas en un laboratorio.

Llevo desarrollando y utilizando modelos compartimentales desde 2021, primero en el ámbito de la salud mental y ahora en el contexto de las epidemias. Mi trabajo actual en el Instituto Burnet se centra en evaluar el futuro impacto de intervenciones sanitarias y nuevos medicamentos, y a veces también traduzco resultados e informes al castellano :)


Sessão

07/12
12:20
20min
How to Stop an Epidemic using the Atomica Python Tool
Eloisa Perez-Bennetts

Infectious diseases are the third leading cause of death worldwide, claiming more than 13 million lives every year. While there are many interventions available for managing epidemics – including vaccines, tests and treatments – the best approach is not always clear. There are complex dynamics at play, with many interacting variables, and the optimal response may vary significantly depending on outbreak severity, funding available, and even sociopolitical context.

Computational modelling is a highly effective way to examine the potential impact of different public health interventions. However, the technical difficulty of building fit-for-purpose models that can simulate these impacts and produce quantitative optimisations is a barrier to widespread use.

Atomica is a Python-based simulation engine for compartmental modelling. It provides an easy-to-use yet highly configurable way to build disease models, with built-in support for interventions and optimisation with budget constraints. By leveraging population, transmission, and public health intervention data, as well as conceptual knowledge of how people progress through stages of disease, we can forecast the potential consequences of different public health strategies in specific countries or settings. With this insight, we can help governments to make the best possible decisions on what to prioritise, saving lives in the process.

Whether you’re a beginner or an expert Pythonista, this talk will equip you with the tools to simulate a real-world epidemic and optimise funding distribution for maximum impact.

Main Stream